Flanders Research Information Space as a tool to monitor interdisciplinary research in Flanders

Bram Vancraeynest¹, Hoang-Son Pham¹, Hanne Poelmans¹, Sadia Vancauwenbergh¹

> ¹ECOOM-UHasselt DSI-UHasselt

15th International Conference on Current Research Information Systems (CRIS2022), May 2022

1/24

1 Flanders Research Information Space (FRIS)

2 Measuring IDR

- Organisational approach
- Cognitive approach

- regional CRIS of Flanders
- connected with the CRIS-systems of all Flemish universities and other knowledge institutions
- CERIF as exchange format
- used by the Flemish government for reports, analysis and statistics in the context of policy making and for monitoring trends in research and innovation.

- 40.000 researchers
- 2000 research groups
- 50.000 projects
- 520.000 publications
- patents, datasets and research infrastructure

• Stimulating and measuring interdisciplinarity in research is one of the points of interest of the Flemish government

- Stimulating and measuring interdisciplinarity in research is one of the points of interest of the Flemish government
- Our research: measuring IDR (interdisciplinary research) in research projects using FRIS.

- Stimulating and measuring interdisciplinarity in research is one of the points of interest of the Flemish government
- Our research: measuring IDR (interdisciplinary research) in research projects using FRIS.
- Goal: Develop an indicator that measure IDR in projects on FRIS that uses all relevant information/data that a project on FRIS has.

Interdisciplinary research is a mode of research by teams or individuals that **integrates** information, data, techniques, tools, perspectives, concepts, and/or theories from **two or more disciplines** or bodies of specialized knowledge to advance fundamental understanding or to solve problems whose solutions are beyond the scope of a single discipline or area of research practice.²

- What exactly is integration?
 - Definition does not directly translates into a mathematical formula

- What exactly is integration?
 - Definition does not directly translates into a mathematical formula
- What information is relevant for IDR?
 - Researchers? Organisations? Disciplines? Title? Keywords? Abstract?

- What exactly is integration?
 - Definition does not directly translates into a mathematical formula
- What information is relevant for IDR?
 - Researchers? Organisations? Disciplines? Title? Keywords? Abstract?
- The notion of IDR depends on the choice of disciplines

Disciplines

Disciplines in FRIS

イロト イヨト イヨト イヨト

- Flemish Research Discipline Standard (VODS)
 - \rightarrow 4 hierarchical levels

.∋...>

< 4[™] ▶

- Flemish Research Discipline Standard (VODS)
 - \rightarrow 4 hierarchical levels
- Persons, organisations, projects have disciplines on FRIS
- Publications do not have disciplines on FRIS

- Flemish Research Discipline Standard (VODS)
 - \rightarrow 4 hierarchical levels
- Persons, organisations, projects have disciplines on FRIS
- Publications do not have disciplines on FRIS
- For IDR: level 2 VODS disciplines
 - 42 disciplines
 - Mathematics, physics, ..., arts

- Flemish Research Discipline Standard (VODS)
 - \rightarrow 4 hierarchical levels
- Persons, organisations, projects have disciplines on FRIS
- Publications do not have disciplines on FRIS
- For IDR: level 2 VODS disciplines
 - 42 disciplines
 - Mathematics, physics, ..., arts

Distance between disciplines

- Similarity based on the collaborations in projects
- E.g. d(math, physics) = 0.2 and d(math, arts) = 0.86

Projects

- Identifier, start date, end date, ...
- Title, abstract, keywords, ...
- Disciplines, participants, organisations, funding ...

Projects

- Identifier, start date, end date, ...
- Title, abstract, keywords, ...
- Disciplines, participants, organisations, funding ...

Blue: organisational approach Red: cognitive approach

Persons and cfPers elements in FRIS

Persons

- Identifier, Gender, Keywords, Person names, Postal address ...
- Disciplines, Affilations ...
- Projects
- Publications
- ...

Persons and cfPers elements in FRIS

Persons

- Identifier, Gender, Keywords, Person names, Postal address ...
- Disciplines, Affilations ...
- Projects (+ co-participants)
- Publications (+ co-authors)

• ...

Blue: used to calculate 'true' disciplines of a reseacher.

Persons and cfPers elements in FRIS

Persons

- Identifier, Gender, Keywords, Person names, Postal address ...
- Disciplines, Affilations ...
- Projects (+ co-participants)
- Publications (+ co-authors)

• ...

Blue: used to calculate 'true' disciplines of a reseacher.

 $\begin{aligned} Dis(p) = & w_1 \cdot D(profile) + w_2 \cdot D(affiliations) + w_3 \cdot D(projects) + \\ & w_4 \cdot D(coparticipants) + w_5 \cdot D(publications) + w_6 \cdot D(coauthors) \end{aligned}$

$$(w_1, w_2, w_3, w_4, w_5, w_6) = (0.35, 0.20, 0.20, 0.05, 0.15, 0.05)$$

- Organisational approaches
 - Diversity of researchers
 - Diversity of organisations
- Cognitive approaches
 - Diversity and network coherence of keywords
 - Diversity of topics through topic modeling

Diversity

Rao-Stirling Diversity

< ⊒ >

Image: A matrix

æ

Assumption: a diverse team of researchers and organisations indicates a higher possibility of interdisciplinarity in a project.

Assumption: a diverse team of researchers and organisations indicates a higher possibility of interdisciplinarity in a project. Measures:

- Diversity of researchers
- Diversity of organisations

Researchers in terms of their disciplines

16 / 24

Diversity of researchers

Researchers in terms of their disciplines

- Jack (100% mathematics = (1, 0, ..., 0))
- Lisa (50% mathematics + 50% physics = (¹/₂, ¹/₂, 0, ..., 0))
 Emma (50% mathematics +50% physics = (¹/₂, ¹/₂, 0, ..., 0))

Researchers in terms of their disciplines

- Jack (100% mathematics = (1, 0, ..., 0))
- Lisa (50% mathematics + 50% physics = $(\frac{1}{2}, \frac{1}{2}, 0, ..., 0)$)
- Emma (50% mathematics +50% physics = $(\frac{1}{2}, \frac{1}{2}, 0, ..., 0))$
- Oistances between the researchers based on the distances of their respective disciplines

Researchers in terms of their disciplines

- Jack (100% mathematics = (1,0,...,0))
- Lisa (50% mathematics + 50% physics = $(\frac{1}{2}, \frac{1}{2}, 0, ..., 0)$)
- Emma (50% mathematics +50% physics = $(\frac{1}{2}, \frac{1}{2}, 0, ..., 0)$)
- Oistances between the researchers based on the distances of their respective disciplines
 - d(L, E) = 0 (they are the same in terms of disciplines)
 - $d(J, E) = d(J, L) = 0.5 \cdot d(math, phys) = 0.5 * 0.2 = 0.1$

Oiversity of researchers

$$\frac{1}{3} \cdot \frac{1}{3}d(J,L) + \frac{1}{3} \cdot \frac{1}{3}d(J,E) + \frac{1}{3} \cdot \frac{1}{3}d(L,E) = 0.022$$

16 / 24

- Approaches based on content of project
- Content of a project = Title + Keywords + Abstract
- Assumption: "keywords" embedded in content from different disciplines indicate possibility of interdisciplinarity in a project

- Approaches based on content of project
- Content of a project = Title + Keywords + Abstract
- Assumption: "keywords" embedded in content from different disciplines indicate possibility of interdisciplinarity in a project

Our proposed approaches

- Diversity and network coherence of keywords
- Topic modeling

Diversity of keywords = diversity of disciplines that keywords belong to

18 / 24

High coherence network

Low coherence network

・ 同 ト ・ ヨ ト ・ ヨ ト

Low network coherence indicates that the keywords are less correlated, and that there is a higher possibility for knowledge integration

Topic models

Topic modeling framework

- Unsupervised topic modeling (e.g, Latent Dirichlet Allocation (LDA))
- Supervised topic modeling (e.g., Labelled LDA)

Combination of Organisational and Cognitive approach

Diversity of researchers (DR) and Diversity of topics (DT) of 2283 projects

High DR and high DT indicate potential IDR

- FRIS is a CRIS with several purposes including monitoring research
- Our research: how can we use FRIS to measure IDR in project
- IDR is complex and cannot be captured in an exact mathematical definition
- Our own version of IDR based on the project data available on FRIS combining two facets of IDR:
 - $\rightarrow~$ Organisational: participants, organisations
 - $\rightarrow\,$ Cognitive: disciplines, title, abstract, keywords,

• FRIS offers lot of data where we that we can use to measure IDR

- FRIS offers lot of data where we that we can use to measure IDR
- Our methods depend on the data quality
 - $\rightarrow\,$ short abstracts, 'duplicate' projects, \ldots

- FRIS offers lot of data where we that we can use to measure IDR
- Our methods depend on the data quality
 - ightarrow short abstracts, 'duplicate' projects, ...
- Possible useful additions
 - \rightarrow project proposals
 - ightarrow publication disciplines

Thank you for your attention!

∃ >

- (日)

æ