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I. INTRODUCTION

The prediction of research disciplines has gained increasing
attention in recent years due to its potential implementations
in a variety of fields, such as academic advising, career
counseling, and academic research funding allocation. Re-
search information systems storing projects (meta) data play a
crucial role in managing and evaluating research (meta) data
across different disciplines and fields of study. In this context,
research projects are manually assigned one or more research
disciplines to facilitate this process. This is usually done by
research administrators due to the limited time the principal
researchers themselves might have. In addition to being rather
subjective and time-consuming, this can lead to inconsistencies
in discipline assignments and hence impact the quality of data
used for monitoring and reporting. To address these limitations
various approaches have been proposed, in the literature, to
predict disciplines associated with research documents, e.g.,
publications, and projects. The frequently used methods in bib-
liometrics are bibliographic coupling, co-citation, and direct
citation [1]. These approaches used citation network analysis
techniques to determine the disciplines related to a publication.
More recently, machine learning techniques have been applied
to classify research documents [2]–[4]. In these approaches,
the publications’ abstracts were used as features to predict
related disciplines. Machine learning techniques have been
demonstrated to perform better than traditional approaches in
bibliometrics. Although these approaches are useful, they may
not be applicable to research information systems that lack
citation data or have low-quality abstracts.

In this paper, we propose a novel approach to predict
the disciplines of research projects in a research information
system. The proposed approach uses machine learning algo-
rithms and extracted disciplines from researchers and their
related information such as organizations, projects, co-authors
on projects, publications, and co-authors on publications. By
analyzing the disciplines from these resources, the proposed
model can predict each project’s most appropriate research
disciplines, providing a more objective and consistent ap-
proach to discipline assignment. This approach is helpful when
there are no citation data or high-quality abstracts available.
In the following sections, we describe the development and
evaluation of our model, including the data sources and
methods used to train the machine learning algorithms, as well
as the performance metrics used to evaluate the accuracy and

effectiveness of the proposed approach.

II. DATA AND METHOD

In this work, we used data available on Flanders Research
Information Space (FRIS)1. This is a current research infor-
mation system (CRIS) governed by the Department Economy,
Sciences and Innovation (EWI) of the Flemish government.
The FRIS research portal discloses information on (partially)
publicly funded research (e.g. researchers, research institu-
tions, projects, and publications) from over 40 data providers
in Flanders. The FRIS portal is used for reports, analysis, and
statistics in the context of policy-making and for monitoring
trends in research and innovation. Each object, e.g., a project,
a publication, or a researcher, is assigned one or more research
disciplines based on the Flemish Research Discipline Standard
(FRDS) [5].

In the FRIS portal, for a given research project, we can
find a list of researchers and their related information, such
as the affiliations they work for, the projects and publications
they have worked on, and their co-authors. We assume that the
expertise of researchers involved in a project can be used to
determine the project’s disciplines. Therefore, in this work, we
attempt to use deep machine learning to predict the disciplines
of projects based on the disciplines of researchers and other
resources related to them.

To do that, we create a training dataset, in which predictor
variables are the disciplines related to researchers, whereas,
output variables are the disciplines of the projects. To generate
the predictor variables, we follow these steps. For each project,
we gather information about the researchers involved. We
collect N disciplines for each researcher from 6 sources: their
profiles, organizations, projects they have worked on, their
co-authors on those projects, their publications, and their co-
authors on those publications. Therefore, for each researcher,
we have a matrix with N rows and 6 columns representing
their disciplines. Assuming a project has n researchers, we
create a matrix representing the project by summing the
matrices of all the researchers involved in the project. This
results in a matrix with N rows and 6 columns, which rep-
resents the project’s disciplines. After completing this process
for all projects, we obtain a 3-dimensional matrix with the
first dimension being the number of projects. Each project is
represented by a matrix with N rows and 6 columns, which
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represents the project’s disciplines as a combination of the
researchers’ disciplines.

Output variables (or labels of the projects) are disci-
plines assigned to the projects. Note that each project is
assigned one or more disciplines from a set of N disciplines.
In this work, we used disciplines at the second level of
FRDS, which includes 42 discipline codes. More granular
levels (the third and/or fourth levels) were mapped onto
their corresponding, hierarchical higher second-level disci-
plines. For example, suppose a researcher r has a set of
disciplines: (01010101, 01010103, 01020201), then the disci-
plines of r will be reduced to the second level codes as
(0101, 0101, 0102).

In theory, any multi-label classification model can be ap-
plied to build a classifier. In this study, however, we propose to
use recurrent neural networks, i.e., Long Short-Term Memory
(LSTM) neural networks [6], to build a classification model.
The LSTM algorithm has proven to be a powerful tool for
modeling sequential data and has been widely adopted in many
applications in industry and academia.

To evaluate the performance of the model, we used Pre-
cision, Recall, and F1-scores metrics. However, since the
number of labels is much larger than the number of labels
in a given sample, then the one-hot encoded label vector for
each sample will have many zeros, which can make the above
metrics less informative. For example, if we have 42 possible
labels, but the average sample has only two or three labels,
then the one-hot encoded label vector for each sample will
have 39-40 zeros and only 2-3 ones. In this case, a model that
predicts all zeros for every sample will be highly accurate,
even though it is not helpful for the actual task.

To address this issue, we propose to use evaluation metrics
that consider the number of labels per sample, such as the
Hamming loss or the Jaccard index. The Hamming loss is the
fraction of labels that are incorrectly predicted for all samples,
while the Jaccard index measures the similarity between the
predicted labels and the true labels for a given sample. A low
score of the Hamming Loss means that the model is making
very few errors in predicting the class labels for the dataset.
Similarly, for the Jaccard Index, a score of one indicates a
perfect match between the predicted and actual labels, while a
score of zero indicates no similarity. Overall, a low Hamming
Loss and a high Jaccard Index are positive indicators of the
performance of the classification model.

III. PRELIMINARY RESULTS

To evaluate the proposed model, we implemented it on 3954
research projects available on the FRIS portal. The dataset was
split into training and testing datasets with proportions of 80%
and 20%, respectively. We evaluated the LSTM with different
numbers of hidden units, such as 32, 64, 128, and 256. The
number of epochs was set to 100 and the batch size to 32.
As a result, the LSTM model with 128 hidden units achieved
the best performance. Table I shows the performance of the
LSTM model on the dataset. As can be seen, the scores of
Precision and F1-scores were quite low, which means that

TABLE I
THE PERFORMANCE OF THE CLASSIFICATION MODEL.

Precision Recall F1-score Support

Micro avg 0.29 0.81 0.43 1318
Macro avg 0.25 0.70 0.36 1318
Weighted avg 0.32 0.81 0.45 1318
Samples avg 0.31 0.87 0.44 1318

the model was not performing well in terms of predicting
both positive and negative instances correctly. For instance,
with the Micro average method, the Precision, Recall, and F1-
scores were 0.29, 0.81, and 0.43, respectively. The Precision of
0.29 indicates that out of all the positive predictions made by
the model, only 29% were actually correct. A Recall of 0.81
indicates that the model was able to correctly identify 81%
of the actual positive instances. The result of a high recall
and low precision indicates that the model is able to identify
most of the positive cases (true positives), but it also predicts
a high number of false positives. The F1-scores of 0.43, which
is the harmonic mean of Precision and Recall, suggests that
the model is not performing well on this task.

The Hamming Loss and Jaccard Index were 0.09 and 0.30,
respectively. The Hamming Loss of 0.09 suggests that on av-
erage, 9% of the labels assigned by the model to the instances
were incorrect. The Jaccard Index of 0.30 suggests that there
was a relatively low overlap between the predicted and true
labels. The reason for the low performance of the model is
possible that the model made more correct predictions overall,
but the predictions were not accurate in terms of individual
labels. This could happen if the classes are imbalanced, and the
model is biased toward the majority class. It could also occur
if the features used to train the model were not representative
enough of the true underlying patterns in the data.

To assess the performance of the model on individual classes
(discipline codes), we calculated the Precision, Recall, and F1-
scores for each class. The results are presented in Table II.
As observed, the number of projects (support) containing
discipline codes varies significantly, indicating that the test
data suffers from an imbalance issue. As a result, the model
did not perform well on this dataset. Moreover, we can see
that the Precision, Recall, and F1-scores associated with some
discipline codes were low or even zero. This outcome indicates
that many discipline codes were not predicted accurately by
the model.

To address the issue of imbalanced data in the model,
we excluded projects that contained low-frequency discipline
codes. Specifically, we excluded projects that had discipline
codes occurring less than 100 times. This resulted in a total
of 3552 projects being available for analysis. The model’s
performance on this dataset is presented in Table III. As
can be seen, all Precision, Recall, F1-scores were better than
the previous results. The Hamming Loss and Jaccard Index
scores were 8% and 43%, respectively, indicating a slight
improvement in the model’s performance. By excluding the
low-frequency discipline codes, we reduced the impact of



TABLE II
PERFORMANCE OF THE MODEL ON INDIVIDUAL LABELS.

Discipline codes Precision Recall F1-score Support

0101 0.28 0.51 0.36 37
0102 0.32 0.65 0.43 65
0103 0.31 0.7 0.43 44
0104 0.22 0.97 0.36 58
0105 0.23 0.83 0.36 18
0106 0.46 0.91 0.61 104
0107 0.33 0.8 0.47 30
0201 0.34 0.79 0.47 34
0202 0.4 0.93 0.56 71
0203 0.26 0.93 0.41 45
0204 0.28 0.66 0.39 41
0205 0.27 0.78 0.4 45
0206 0.24 0.64 0.35 22
0207 0.31 0.72 0.43 25
0208 0.1 0.22 0.13 18
0299 0 0 0 14
0301 0.5 0.93 0.65 122
0302 0.29 0.91 0.44 58
0303 0.19 0.73 0.3 33
0304 0.33 0.82 0.47 28
0305 0.16 0.96 0.28 24
0306 0.2 0.8 0.32 45
0399 0 0 0 0
0401 0.42 0.81 0.56 37
0402 0.08 0.5 0.14 4
0499 0 0 0 2
0501 0.29 0.86 0.44 35
0502 0.38 0.9 0.53 40
0503 0.19 0.7 0.3 23
0504 0.18 0.86 0.3 28
0505 0.35 0.93 0.51 27
0506 0.21 0.88 0.33 16
0507 0.31 0.57 0.4 7
0508 0.2 0.85 0.32 13
0599 0.1 0.33 0.15 3
0601 0.29 0.93 0.44 27
0602 0.3 0.88 0.44 25
0603 0.21 0.88 0.33 17
0604 0.43 0.91 0.59 32

TABLE III
THE PERFORMANCE OF THE CLASSIFICATION MODEL.

Precision Recall F1-score Support

Micro avg 0.39 0.85 0.53 1127
Macro avg 0.39 0.83 0.52 1127
Weighted avg 0.44 0.85 0.56 1127
Samples avg 0.45 0.89 0.56 1127

imbalanced data on the model and were able to improve its
performance.

IV. CONCLUSION

In this work, we proposed an approach to predict disciplines
in research projects based on an organizational approach. The
proposed approach is useful when there are no citation data
or high-quality abstracts available. Particularly, in this pro-
posed approach, the projects are represented by researchers’
disciplines collected from various resources such as profiles,
organizations, projects, co-authors on projects, publications,
and co-authors on publications. To predict disciplines related
to projects, we applied a deep machine learning algorithm.

We implemented the proposed approach on research projects
available on the FRIS portal. The preliminary results showed
that the model was not performing very well for this particular
task. There are several things we can try to improve the
performance of the model:

• Collect more data to improve the representation of each
class and balance the data if possible.

• Experiment with different hyperparameters such as the
number of LSTM layers, the number of nodes in each
layer, and the learning rate.

• Using a different type of neural network architecture,
such as a convolutional neural network (CNN) or a
transformer network.

• Consider preprocessing the data differently, such as using
different normalization techniques or feature engineering.

• Explore the possibility of incorporating external data
sources or domain knowledge to improve the performance
of the model.

• Additionally, it might be helpful to analyze the specific
misclassifications the model is making to gain insights
into why the model is not performing well. This can help
guide future improvements to the model.
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