

1

CERIF API specification

Version 1.0

August 2015

Editors:

Nikos Houssos, National Documentation Centre / NHRF, Greece

Dimitris Karaiskos, National Documentation Centre / NHRF, Greece

Reviewers:

Andrea Bollini, CINECA, Italy

Daniele Bailo, National Institute of Geophysics and Volcanology (INGV), Italy

Dragan Ivanović, University of Novi Sad, Serbia

Jan Dvořák, Charles University in Prague, Czech Republic

Laurent Remy, IS4RI, France

Nikos Pougounias, National Documentation Centre / NHRF, Greece

Thomas Vestdam, Elsevier, Denmark

Thorsten Hoellrigl, Thomson Reuters, Germany

Vassilis Bonis, National Documentation Centre / NHRF, Greece

Organisation names reflect the affiliations of persons at the time of their contribution to the CERIF API

specification.

CERIF API Specification – version 1.0

2

1 Aims and scope of the CERIF API specifications

The present document constitutes the specification of a standard API that enables 3rd party software

programs to access and reuse Research Information maintained in Current Research Information Systems

(CRIS). Research information can be defined as any information that describes the research output as well

as the context in which research is being conducted. CRIS systems typically store, manage and disseminate

data about entities like people, projects, organisations, publications, patents, products, funding

programmes, indicators and metrics, research infrastructures (facilities, equipment, services) and the

relationships between them. The primary objectives of the CERIF API are the following:

 To facilitate the interoperability of CRIS systems and their integration with other information systems.

 To enable the development of applications, services and components that can access and reuse

information across different CRIS systems in a standard, unified way.

The CERIF API is mainly addressed to the following types of stakeholders:

 Organizations and individuals (e.g. software developers, product managers, CRIS managers) involved

in the implementation of CRIS software platforms, individual CRIS systems and related services.

 Organizations and individuals (e.g. software developers, product managers) involved in the

development of software applications, services and components that can benefit from retrieving and

reusing the information stored in CRIS systems.

The organization responsible for the CERIF API specification is euroCRIS and in particular the CRIS

Architecture and Development Task Group. EuroCRIS is the international organization for research

information, a non-profit association with more than 200 institutional members from more than 40

countries in Europe and worldwide. One of the principal aims of euroCRIS is the development and curation

of the Common European Research Information Format (CERIF). CERIF is the international standard data

model for research information and a European Union recommendation to member states. The

custodianship of CERIF has been handed over to euroCRIS by the European Union in 2000. The CERIF data

structure defined as an entity-relationship model. The CERIF standard also defines an XML representation

of research information (CERIF XML) as a format for data exchange involving CRIS systems. The API

presented in the current document utilises CERIF XML as the basis for the representation of the data that

is made available to 3rd parties by CRIS systems.

The present version 1.0 of the API addresses basic aspects of read-only access to information in CRIS

systems. Operations that alter the data in CRIS systems (for example, Create, Update and Delete) as well

as sophisticated search facilities are beyond the scope of this version of the API.

CERIF API Specification – version 1.0

3

2 CERIF API specification

2.1 Supported operations

The calls supported by the API are documented in Table 1. The structure of responses is provided in the attached examples, as referenced from

within the Table.

For the sake of brevity in the table, shortcut notation is being used for the specification within API calls of (a) paging functionality and (b) which

data elements will be contained within returned CERIF Entity instances. Please refer to Section 2.2 for the relevant documentation.

Description REST API request format Example URL1 Method

1 Get data on all instances of a

particular type of entity. The data

retrieved can be (a) a list of

identifiers (each identifier should be

a dereferenceable URL), (b) a list of

entire records.

Sorting of the results according to

criteria specified by the client is not

supported.

GET /{entity name in

plural}?identifiersOnly=[true |

false]&{pagingSpec}&{returnedEntitySpec}

Parameters:

entity name in plural [string from controlled list,

mandatory]: A CERIF entity in plural. Please

refer to Section 2.3 for the list of valid values.

identifiersOnly[true | false, default=true]: If

true only an identifier (in the form of an

actionable URL) is returned per record.

pagingSpec: Specification of paged retrieval of

results (see Section 2.2).

http://api.examplecris.org/projects/?

offset=0&pageSize=100

Example result (attached):

identifiers.xml

http://api.examplecris.org/projects/?

offset=0&pageSize=100&fedids=true

&classifications=false&links=false

GET

1 The pattern of example URLs are indicative. The current pattern assumes the availability of virtual hosting facilities, however the utilization of other patterns
is allowed (e.g. http://examplecris.org/api/ instead of http://api.examplecris.org/).

http://dspacecris.eurocris.org/handle/11366/404

CERIF API Specification – version 1.0

4

Description REST API request format Example URL1 Method

returnedEntitySpec: Specifies which data

elements will be contained within returned

CERIF Entity instances (see Section 2.2).

2 Get all information about a

particular instance of a particular

type of entity. The information

returned must contain the elements

specified in the query.

If the requested instance cannot be

returned (e.g. it does not exist), an

HTTP response with an appropriate

4XX code is returned.

GET /{entity name in

plural}/{id}?{returnedEntitySpec}

Parameters:

entity name in plural [string from controlled list,

mandatory]: A CERIF entity in plural. Please

refer to Section 2.3 for the list of valid values.

id [string, mandatory]: An identifier for the

entity instance. Should be the same identifier

as returned by API call #1 with

identifiersOnly=true (“Get the identifiers of all

instances of a particular type of entity”)

returnedEntitySpec: Specifies which data

elements will be contained within returned

CERIF Entity instances (see Section 2.2).

http://api.examplecris.org/projects/2

c9083b43ec281df013ec285e81a0000

?

links=orgunits;fundings;persons;medi

a

Example result:

project.xml

http://api.examplecris.org/projects/2

c9083b43ec281df013ec285e81a0000

?fedIds=false&classifications=false

Example result:

project_short.xml

http://api.examplecris.org/projects/2

c9083b43ec281df013ec285e81a0000

? links=orgunits&linkedObjects=true

Example result:

project_with_linked_orgunits.xml

3 Get information about all CERIF

entities (core and link entities)

supported by the CRIS system (i.e.

definition of the CERIF subset

supported by the CRIS system).

GET /entities http://api.examplecris.org/entities

Example result:

entities.xml

GET

http://dspacecris.eurocris.org/handle/11366/405
http://dspacecris.eurocris.org/handle/11366/406
http://dspacecris.eurocris.org/handle/11366/407
http://dspacecris.eurocris.org/handle/11366/403

CERIF API Specification – version 1.0

5

Description REST API request format Example URL1 Method

The returned results are structured

according to CERIF-API-Entities.xsd

4 Get semantic layer contents from a

CRIS. Returns an XML dump of

classes and classification schemes,

such as the standard CERIF

Semantics XML available at

http://www.eurocris.org/Uploads/W

eb%20pages/CERIF-

1.5/CERIF1.5_Semantics.xml

GET /semantics http://api.examplecris.org/semantics GET

5 Search by classification. The data

retrieved can be (a) a list of

identifiers (identifier should be a

dereferenceable URL), (b) a list of

entire records.

Sorting of the results according to

criteria specified by the client is not

supported.

GET /{entity name in plural}?class={class

UUID}&classScheme={class scheme

UUID}&{pagingSpec}&identifiersOnly=[true |

false]&{returnedEntitySpec}

Parameters:

entity name in plural [string from controlled list,

mandatory]: A CERIF entity in plural. Please

refer to Section 2.3 for the list of valid values.

class [UUID, mandatory]: Specifies the

classification term. Value: UUID of the

classification.

classScheme [UUID, mandatory]: Specifies the

classification scheme to which the classification

belongs. Value: UUID of the classification

scheme.

http://api.examplecris.org/orgunits/?

class= eda2b2ef-34c5-11e1-b86c-

0800200c9a66 &classScheme=

759af939-34ae-11e1-b86c-

0800200c9a66

&offset=101&pageSize=100

(class: Research Institute, class

scheme: Organisation Types)

GET

http://dspacecris.eurocris.org/handle/11366/399
http://www.eurocris.org/Uploads/Web%20pages/CERIF-1.5/CERIF1.5_Semantics.xml
http://www.eurocris.org/Uploads/Web%20pages/CERIF-1.5/CERIF1.5_Semantics.xml
http://www.eurocris.org/Uploads/Web%20pages/CERIF-1.5/CERIF1.5_Semantics.xml

CERIF API Specification – version 1.0

6

Description REST API request format Example URL1 Method

identifiersOnly [true | false, default=true]: If

true only an identifier (in the form of an

actionable URL) is returned per record.

returnedEntitySpec: Specifies which data

elements will be contained within returned

CERIF Entity instances (see Section 2.2).

pagingSpec: Specification of paged retrieval of

results (see Section 2.2).

6 Search by Federated Identifier.

This API call is expected to return a

single result.

The information returned has the

same form as in API call #2.

If the requested instance cannot be

returned (e.g. it does not exist), an

HTTP response with an appropriate

4XX code is returned.

GET /{entity name in plural}?fedIdClass={class

UUID specifying the type of federated

identifier}&fedId={value of federated

identifier}&{returnedEntitySpec}

Parameters:

entity name in plural [string from controlled list,

mandatory]: A CERIF entity in plural. Please

refer to Section 2.3 for the list of valid values.

fedIdClass [UUID, mandatory]: Type

(classification) of identifier. The value should

specify a classification of a federated identifier

(i.e. a classification belonging to the

classification scheme “Identifier Types” that

applies on FedId_Class). Value: UUID of the

classification.

fedId [string, mandatory]: The value of the

identifier.

http://api.examplecris.org

/persons/search?fedIdClass =

716bcc9a-c9dd-4b8b-b4ab-
6c140e578ec3
&fedId=1234-1234-1234-

1234&offset=150&pageSize=25

(fedIdClass: ORCID)

GET

CERIF API Specification – version 1.0

7

Description REST API request format Example URL1 Method

returnedEntitySpec: Specifies which data

elements will be contained within returned

CERIF Entity instances (see Section 2.3).

Table 1. Specification of API calls

CERIF API Specification – version 1.0

8

2.2 Specification of paging functionality and data elements in returned

content

For the sake of brevity, the following shortcuts, as defined in Table 2, are used for the specification of API

operations in Table 1 (Section 2.1).

Shortcut description Format of query fragment Example query fragments

Paging specification

Shortcut: (paging Spec)

How API clients specify within

a request the desired paging

functionality.

offset=N&pageSize=L

Parameters:

offset [integer, optional, default=0]: The

number of items within the entire list of

results that are skipped to reach the start

of the current page. For example, if

offset=10, the current page starts from the

11th element in the list of results.

pageSize [integer, optional, default=20,

max=200]: Maximum numbers of elements

to be returned in response to the current

client request. To avoid the case of servers

being overloaded due to excessive page

sizes, there is a maximum allowed value for

pageSize (200 items).

Note: No provisions are included in the API

specification for the case of the result set

being modified during the retrieval of the

various pages (e.g. a new record is inserted

possibly resulting in, for example, the

inclusion of the same result in more than

one pages).

offset=0&pageSize=100

offset=1500&pageSize =100

offset=0&pageSize=200

Returned entity content

specification

Shortcut: (returnedEntitySpec)

How API clients specify within

a request which data

elements will be contained

within returned CERIF Entity

instances.

fedIds={true/false}&classifications={true/fal

se}&links={true/false/{cerifEntity1;cerifEntit

y2;...;cerifEntityN}}&linkedObjects={true |

false}&linkedSemantics={true | false}

Parameters:

fedIds [true | false, default=true]: If true,

the entity instance’s FedIds are included in

the response. Otherwise, the entity’s

FedIds are not included in the response.

http://api.examplecris.org/pro

jects/2c9083b43ec281df013ec

285e81a0000?fedIds=false

http://api.examplecris.org/pro

jects/2c9083b43ec281df013ec

285e81a0000?fedIds=true&cla

ssifications=true&links=orguni

ts&linkedObjects=true

CERIF API Specification – version 1.0

9

classifications [true | false, default=true]: If

true, the entity instance’s Classifications

({Entity_Class} objects) are included in the

response. Otherwise the entity’s

Classifications are not included in the

response.

links [true | false |

{cerifEntity1;cerifEntity2;...;cerifEntityN},

default=true]: If true, the entity instance’s

links with all other entity instances are

included in the response. If false, no links

are included in the response. If a sequence

of CERIF entity labels (see Section 2.3) is

specified, only the links with those types of

entity instances are included in the

response. Labels in a sequence are

separated using a semicolon (‘;’).

linkedObjects [true | false |

{cerifEntity1;cerifEntity2;...;cerifEntityN},

default=false]: If true, the entity instance’s

links, as full objects, with all other entity

instances are included in the response,

along with the entity instance at the

“other” side of the link (including basic,

multi-lingual and fedId fields). If false, full

object of links are not included in the

response. If a sequence of CERIF entity

labels (see Section 2.3) is specified, only

those links with those types of entity

instances are included in the response.

Labels in a sequence are separated using a

semicolon (‘;’).

linkedSemantics [true | false,

default=false]: If true, the returned results

include the definition (i.e. basic and multi-

lingual fields) of all the semantics

(classifications and classification schemes)

utilized in the returned {Entity_Class}

objects and links.

CERIF API Specification – version 1.0

10

(A) Clarifications on the use of

identifiersOnly. When identifiersOnly is set

to true all other “Returned entity content”

parameters are omitted. The “Returned

entity content” parameters are fedIds,

classifications, links, linkedObjects and

linkedSemantics.

(B) Clarifications on the use of links and

linkedObjects parameters: The

linkedObjects parameter is complementary

to the links parameter. Thus, the

linkedObjects parameter is not taken into

account when the links parameter is false.

In particular:

1. If links=false and linkedObjects= [true |

false |

{cerifEntity1;cerifEntity2;...;cerifEntity

N}] neither links nor linked objects are

included in the returned results.

2. If links=true |

{cerifEntity1;cerifEntity2;...;cerifEntity

N} and linkedObjects=false, only the

links (not linked objects) are included

in the returned results.

3. If links=cerifEntity1; cerifEntity2; ...;

cerifEntityN and linkedObjects=true,

the specified links and the respective

linked objects (i.e. only the linked

objects of the entities specified in the

links parameter) are included in the

returned results.

4. If links=true and linkedObjects=

cerifEntity1; cerifEntity2; ...;

cerifEntityN, all links are included in

the result but in full record format are

only those specified by linked objects.

5. If links=cerifEntity1; cerifEntity2; ...;

cerifEntityN and linkedObjects=

cerifEntity1; cerifEntity2; ...;

cerifEntityN, all specified links are

included in the result but in full record

format will be only those included in

CERIF API Specification – version 1.0

11

both lists (the links and linked objects

lists of entities).

6. If

links=cerifEntity1;cerifEntity2;...;cerifE

ntityN and linkedObjects=false, the

specified links are included in the

returned results. No linked objects are

included in the returned results.

7. If links=true and linkedObjects=true, all

links and all linked objects are included

in the returned results.

(C) Clarifications on the use of

classifications and linkedSemantics

parameters:

Parameters classifications and

linkedSemantics do not correlate neither

they depend on each other. The

classifications parameter when set to true

includes in the response instances of type

{Entity_Class} for the retrieved Entity(ies)

(i.e. this parameter does not result in the

inclusion of instances of type cfClass and

cfClassScheme to the response). The

linkedSemantics parameter when set to

true includes in the response full records of

all Class instances, i.e. Classes coming from

{Entity_Class} and Classes attached on

{Entity_Entity} links (e.g. the Class attached

on a link of type cfPers_OrgUnit and so on).

Table 2. Specification of paging functionality and data elements in returned content

CERIF API Specification – version 1.0

12

2.3 Labels of CERIF entities

Each CERIF entity in the API is expressed using a human readable label, always in plural in any API call

(e.g. projects for cfProj, publications for cfResPubl).

The entity URL labels are shown in the following Table 3. Specification of API calls:

Entity URL label

cfProject /projects

cfPerson /persons

cfOrgUnit /orgunits

cfResultPublication /publications

cfResultProduct /products

cfResultPatent /patents

cfFunding /fundings

cfService /services

cfFacility /facilities

cfEquipment /equipments

cfMedium /media

cfIndicator /indicators

cfMeasurement /measurements

cfEvent /events

cfPAddr /postaladdresses

cfEAddr /electronicaddresses

cfGeoBBox /geobboxes

cfCitation /citations

cfCV /cvs

cfPrize /prizes

cfQualification /qualifications

cfExpertiseAndSkills /expertiseandskills

Table 3. List of valid names of CERIF entities for use in URLs

CERIF API Specification – version 1.0

13

2.4 CERIF API data marshalling in HTTP

CERIF API calls are performed with the HTTP protocol, using HTTP methods. Responses to API calls return

information in XML embedded in the body of HTTP response messages. The MIME type “application/xml”

applies to all CERIF API responses. The returned XML data structure follows the XML Schema definitions

CERIF-API-Main.xsd, CERIF-API-Header.xsd, CERIF-API-Payload.xsd.

The CRIS systems implementing the CERIF API may impose restrictions and registration / authentication

requirements for clients of the API. These restrictions and requirements are beyond the scope of the

current specification.

The HTTP response body contains XML divided into two parts:

1. The header (not to be confused with the header of the containing HTTP response message), which

includes meta-information about the actual data, returned. This information, structured according to

CERIF-API-Header.xsd, includes the following:

◦ Data about the source CRIS system that produced this response, in particular the “base URL” of

the CERIF API at this CRIS.

◦ Data useful for paging results in clients (total number of returned records, actual number of

records returned in current page, offset, page size, max number of records that can be returned

by server in a single response). Paging results refer only to the instances of the requested type of

entity as denoted by {entity name in plural} in API calls and not to the data that may be included

in the response, whenever the parameters linkedObjects and linkedSemantics are used with value

other than false (see Section 2.2).

◦ The query that triggered this responses. This information is included only in cases of responses to

GET requests and contains essentially the URL invoked by the client.

2. The payload, which contains the actual data retrieved from the CRIS system in response to the

request. The content of the payload (which must conform to CERIF-API-Payload.xsd) can be either a

CERIF XML structure or a custom XML response. The cases where a custom structure is being used

are, for example, in situations where a pure CERIF XML approach would make the response overly

complex and lengthy, i.e. where the gain of using a custom format is substantial in terms of complexity

and size. In the current version of the API, a custom XML structure is used for the response to method

call #3 (CERIF-API-Entities.xsd).

This structure is illustrated in the following example:

<?xml version="1.0" encoding="UTF-8"?>

<CERIF-API>

 <Header>

 <api-version>1.0</api-version>

 <source>http://examplecris.org/api</source>

http://dspacecris.eurocris.org/handle/11366/401
http://dspacecris.eurocris.org/handle/11366/400
http://dspacecris.eurocris.org/handle/11366/402
http://dspacecris.eurocris.org/handle/11366/400
http://dspacecris.eurocris.org/handle/11366/402
http://dspacecris.eurocris.org/handle/11366/399

CERIF API Specification – version 1.0

14

 <offset>50</offset>

 <pageSize>5</pageSize> <!--requested max number of elements in page -->

 <resultsInPage>3</resultsInPage> <-- actual number of elements in page -->

 <totalResults>53</totalResults>

 <maxPageSize>200</ maxPageSize>

 <query>http://examplecris.org/api/persons?offset=50&pageSize=5</query>

 </Header>

 <Payload>

 <CERIF xmlns="urn:xmlns:org:eurocris:cerif-1.6-2"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:xmlns:org:eurocris:cerif-1.6-2

 http://www.eurocris.org/Uploads/Web%20pages/CERIF-1.6/CERIF_1.6_2.xsd"

 date="2014-05-04" sourceDatabase="http://examplecris.org">

 <cfPers>

 <cfPersId/>

 <cfURI>http://api.examplecris.org/persons/00581d92-dbb5-46cc-a327-68da38db9ef1
</cfURI>

 </cfPers>

 <cfPers>

 <cfPersId/>

 <cfURI>http://api.examplecris.org/persons/03c41a9c-4b49-461c-b88f-fc1da4fabd01
</cfURI>

 </cfPers>

 <cfPers>

 <cfPersId/>

<cfURI>http://api.examplecris.org/persons/04f23f8b-068d-4368-a233-dbef74ecaa9f
</cfURI>

 </cfPers>

 </CERIF>

 </Payload>

</CERIF-API>

CERIF API Specification – version 1.0

15

Appendix: CERIF API design choices

A range of design issues is encountered during the definition of the CERIF API. The following Table 4 lists

the main issues involved and mentions, point by point, the approach followed based on the discussions

and feedback within the Arch TG.

Issue Approach

Which API technology and protocol should be

used, SOAP or REST?

REST, due to its simplicity for developers, ubiquity

and inherent support for the operations foreseen

for the CERIF API (i.e. generic, fundamental CRUD-

style primitives – at first limited to Read – not

complex “business” operations).

What should be the output format technology,

XML or JSON?

XML, since CERIF XML is already in place. JSON has

been discussed as an idea (Porto joint CERIF and

Arch TG meeting), but has not gained wide

acceptance within the euroCRIS community at the

moment.

The data returned by API calls will be always

strictly CERIF XML?

Having everything as CERIF XML is compatible with

current CRIS systems, since any data the server

and client need to produce and parse is the CERIF

XML Schema. However, using CERIF XML for

everything adds considerably to the complexity

and size of the exchanged data, especially for the

/entities and /{entity name in plural} calls (e.g. lists

of identifiers or counts can be transferred more

efficiently using a custom encoding instead of

representing them in CERIF XML, e.g. as cfURIs and

cfMeasurements). While in CERIF XML the size of

the data exchanged through these API calls is not

expected to be extremely large in most cases, it is

not unlikely that the volume of exchanged

information might impact performance in certain

situations, while simplicity in representation will

be beneficial for API implementors. Furthermore,

some meta-information about the returned

results is useful to be included in API responses.

Therefore, the adopted approach is to represent

the actual returned CRIS data in most cases in

CERIF XML, with certain exceptions when an

alternative representation is substantially simpler

and less verbose. Furthermore, a header section is

included with every API response, providing meta

information about the returned results in a new

non-CERIF XML format.

CERIF API Specification – version 1.0

16

REST is an architectural paradigm with a wide

range of implementations and “RESTFul-ness” is a

debated topic. How strict will the CERIF API be

with conforming to the “orthodox” REST way of

creating an API? A common distinction is the levels

of a REST maturity model defined by Richardson et

al2:

Level 0: HTTP as a transport mechanism

Level 1: Model data as resources addressable by

URIs

Level 2: Use HTTP as an application protocol (i.e.

HTTP verbs for defining operations, HTTP message

codes for addressing exceptions)

Level 3: HATEOAS (Hypertext As The Engine Of

Application State)

Level 2 has been followed in the current version of

the API specifications, with some features of Level

3. Level 3 might be useful, but also probably to

some extent an overkill for the case of the CERIF

API and are not yet widely used by developers in

real-life APIs. A feature of Level 3 has been (partly)

adopted in the current draft API specifications:

Certain types of responses contain hyperlinks that

the client can follow to continue retrieving and

consuming data from the server through the API.

For example, each entity in the /entities response

contains a link to the list of entity instances for this

entity and the latter (list of entity instances for an

entity) contains links to each entity instance of this

type – all links are represented in valid CERIF XML.

What content / MIME type should be used in HTTP

interactions between client and server? Is

application/xml enough or should a custom media

type be defined?

This is a probably useful feature, but mostly

important when HATEOAS is being used. In the

current version application/xml is being used.

“Depth” of information retrieved with each entity

instance.

A purist REST approach would be to separately

retrieve records of different entity types (e.g.

retrieve a publication and its authors through two

separate requests). In practice, it is convenient for

developers, in particular especially CERIF API

consumers, to be able to retrieve a selected

number of entity instances linked with a CERIF

XML record (e.g. retrieve authors and projects

linked with a publication record). Therefore, the

CERIF API foresees such functionality in a

parameterized way, so that retrieval of

information is selective (to avoid fetching

unnecessary records) and applied only in cases

that is meaningful for the client (see Section 2.1,

the linkedObjects parameter in API call #2)

Table 4. CERIF API design choices

2 Richardson, L. (2008) Justice Will Take Us Millions Of Intricate Moves. Presentation at the QCon 2008 conference,
19-21 November 2008, San Francisco, USA. Available at http://www.crummy.com/writing/speaking/2008-QCon/.

