Decentralized Persistent Identifiers: a basic model for immutable handlers

Miguel-Angel Sicilia, Elena García-Barriocanal, Salvador Sánchez-Alonso, Juan-José Cuadrado

CS Department
University of Alcalá (Madrid)

June 14, 2018
Outline

- PID systems and decentralization.
- A model of decentralized PIDs using verifiable claims.
- Example deployment using IPFS.
- Conclusions and outlook.
Persistent Identifier (PID) systems aim at providing long-lasting references and resolution to digital objects.

They are actually also resolving to metadata.

Examples are the Handle System (DOIs, DSpace) and Archival Resource Key (ARK).

They are (in some sense) centralized, either in the resolution itself and/or in the assignment of domains for minting ids.
What do we mean by decentralized?

Two types of decentralization\(^1\):
- Architectural: how cooperating and equal are the computers supporting the service?
- Political: who is controlling those computers?

For example, the Handle System is politically centralized (patented technology with a public license, service agreements) and architecturally hierarchical (a global handle service that federates local services).

Decentralization is important for fault-tolerance, attack resistance, collusion resistance and (arguably) sustainability.

\(^1\)Adapted from: https://medium.com/@VitalikButerin/the-meaning-of-decentralization-a0c92b76a274
Is ARK decentralized?

- Free service, open to any archival organization.
- The Name Assigning Authority Number (NAAN) Registry is centralized (California Digital Library as BDFL?).
- Each NAAN is responsible for its ids, and there is no cooperation built-in or incentive mechanism to maintain them (beyond re-direction).
Is ARK decentralized?

http://gallica.bnf.fr/ark:/12148/bpt6k5834013m
http://gallica.bnf.fr/ark:/12148/bpt6k5834013m?
http://other.example.org/ark:/12148/bpt6k5834013m
http://other.example.org/ark:/12148/bpt6k5834013m?

- Shall the metadata requests return the same info?
- How can we trust they return the same object?
- Can we be sure the returned resources have not been tampered?
- All this still relies on the Name Mapping Authority Hostport (NMAH), and NMAH do not cooperate among them.
Proposal in a nutshell

- Remove any need of a centralized organization in assigning and maintaining identifiers and resources ("anyone can mint a PID").
- Provide provenance proof built-in, i.e. support digitally verifiable claims (including metadata).
- Make PIDs and objects truly immutable and (eventually) permanent.
- Provide a platform for building incentive systems for cooperating in maintaining the resources and their links.
A **verifiable claim** is a claim that is effectively tamper-proof and whose authorship can be cryptographically verified\(^2\).

A verifiable claim that associates an identifier to a digital object can be considered a PID iif **the object referenced is immutable**.

\(^2\) https://www.w3.org/TR/verifiable-claims-data-model/
Byte content model and verifiable claims

- The byte content of digital resources (and the claims about them) can be identified by **content hashes**.
- Verifiable claims are thus claims associating some metadata (maybe including legacy existing PIDs) to a content hash.
- These claims and the objects they reference are deposited in a decentralized file system as IPFS, considered (pragmatically) permanent\(^3\).

\(^3\)BitTorrent-style, this requires some incentive mechanism or stewardship.
Decentralized file systems and IPFS

- Decentralized file systems share file storage in the net.
- The Interplanetary File System (IPFS) is one of them, inspired on the BitTorrent P2P network.
- Files and folders are referenced and stored using content hashing, and storage is distributed using Merkle DAGs.

```bash
ipfs add -r .
added QmSTuTETThyESv...HPD8wSHVy7 test-ipfs/donut.jpeg
added QmSR9MJ5resQLj...jZeZDtW test-ipfs/purse.jpeg
added QmUNLLsPfHbsf67hva3Nn test-ipfs/folder1
added QmaKZ3dnc9ejBdGg...Ljk6gXUmk9sdM9 test-ipfs
```
IPFS is intended to provide a global P2P file system where equal peers collaborate in maintaining the files, with no central or specially privileged nodes.

As files are retrieved in nodes they create local replicas.

Retrieval can be optimized using the swarm of nodes or considering locality.

If a node “pins” a particular file, it does not garbage collect it, so it becomes a “custodian”.
The identifier system

- Claims are assumed to refer to valid contents via content hashes (this may be enforced including smart contracts in the solution).
- The **claim itself has a content hash and this can be considered a PID**. It resolves to a resource+metadata and is unique.
- Anybody can sign and deposit claims, i.e. mint PIDs, no trust required.
- Users (journals, institutions, individuals) may also reference and “pin” these identifiers.
- Digital signatures make those claim’s issuer verifiable.
- Existing identifier schemas and arbitrary metadata can be mapped inside the claim content.
Example: minimal claim

- Only the mandatory elements of a verifiable claim plus a specific type and the IPFS link.
- This asserts that the signer has minted an PID and nothing else.
- With `ipfs add` we have the PID.
- Syntax to be revised to comply with W3C specs.

```json
{
    "@context": ["https://w3id.org/security/v1",
        "fs://ipfs/Qre...", ...],
    "id": "https://bnf.fr/credentials/3732",
    "type": ["Credential", "PID-ipfs"],
    "claim": {
        "id": "/ipfs/QmUmg7BZC1YP1...",
        "link": {
            "/": "/ipfs/QmUmg7BZC1YP1...
        },
        "signature": {...}
    }
}
```
Example

{
 "@context": ["https://w3id.org/security/v1",
 "fs://ipfs/Qre...", ...],
 "id": "https://bnf.fr/credentials/3732",
 "type": ["Credential", "PID-ipfs"],
 "issuer": "https://bnf.fr", "issued": "2018-01-01",
 "claim": {
 "id": "/ipfs/QmUmg7BZC1YP1...",
 "link": {"/": "/ipfs/QmUmg7BZC1YP1..."},
 "ark": "ark:/12148/bpt6k5834013m",
 "Content-Type": "application/pdf",
 "charset": "utf-8",
 "metadata": {
 "/": "/ipfs/QmUmg56yiuo9.."
 }
 },
 "signature": {...}
}
Conventions used

- In the `@context` a reference to a IPFS file (in URI form) contains the schema for type (e.g. PID) and the properties inside claim (e.g. ark).
- The id in the claim is the same as in `link`. The former is part of W3C model and the latter is an IPLD link for IPFS.
- Additional metadata about the resource is included in the claim, in this case required to process the information.
Incentives

- Popular items in IPFS often retrieved continue to be live as in BitTorrent in any case.
- Voluntary basis: “pinning” resources and verifiable claims by institutions with archival missions.
- Clients that reuse idle space and computing as in SETI@Home and others\(^4\).
- Filecoin: a blockchain solution for renting storage space with payments for storage and retrieval.

\(^4\)https://en.wikipedia.org/wiki/List_of_distributed_computing_projects
Conclusions and outlook

- Current PID systems rely on conventional Web servers that do not cooperate in the maintenance of identifiers and resources.
- Some PID systems have a degree of political centralization.
- We have showed how the W3C verifiable claims models can be combined with distributed file systems for a decentralized approach to identification and de-referencing.
- Eventually, that solution can be complemented with incentive mechanisms for a sustainable solution.
- Beyond this: smart contracts to enforce additional functionality and conventions in a trustless context.