Please use this identifier to cite or link to this item:
Title: Can machines understand what researchers look for? Conceptualizing the research world
Authors: Guillaumet, Anna 
Keywords: semantics;research information;research data;machine learning;data mining;graphs;discoverability
Issue Date: 10-Jun-2016
Publisher: euroCRIS
Series/Report no.: CRIS2016: 13th International Conference on Current Research Information Systems (St Andrews, June 9-11, 2016)
Conference: CRIS2016 – St Andrews 
Research information is a key topic for the researchers. Throughout history, researchers need to find what they want mainly through paper publications or books of previous researchers. Due the advance of the Internet, a large number of possibilities of data interaction appeared, making impossible to process and track all the research information and this could be a disadvantage. For this reason, semantics searches could help researchers to find and discover information in a reliable way. We must conceptualize the research word, through ontologies and the semantic data modeling techniques such as Resource Description Framework (RDF) and Web Ontology Language (OWL), to create a virtual scenario that a machine can “understand”, in this way, when a researcher search or seek something, the machine provides results ordered by categories and discards the results that are not relevant. Also it can make recommendations: helping researchers find colleagues, affinities with groups, best projects for them, and so on. To make this possible, we must define a good interface (using user experience techniques) and use a powerful semantic search engine (using i.e. machine learning, data mining techniques). The results must show as clear as possible, maybe with data visualization techniques.
Delivered at the CRIS2016 Conference in St Andrews.-- Contains conference paper (9 pages) and presentation (25 slides).
Appears in Collections:Conference

Files in This Item:
File Description SizeFormat
CRIS2016_paper_17_Guillaumet.pdfpost-print version615.47 kBAdobe PDFView/Open
Guillaumet_euroCRIS 2016_v.2.pptxPPT presentation4.38 MBMicrosoft Powerpoint XMLView/Open
Show full item record

Page view(s) 20

Last Week
Last month
checked on Sep 28, 2021

Download(s) 20

checked on Sep 28, 2021

Google ScholarTM


Items in DSpace are offered under a CC-BY 4.0 licence unless otherwise indicated